A uniform approach for the fast computation of Matrix-type Padé approximants
ثبت نشده
چکیده
منابع مشابه
Fraction-Free Computation of Matrix Rational Interpolants and Matrix GCDs
We present a new set of algorithms for computation of matrix rational interpolants and one-sided matrix greatest common divisors. Examples of these interpolants include Padé approximants, Newton–Padé, Hermite–Padé, and simultaneous Padé approximants, and more generally M-Padé approximants along with their matrix generalizations. The algorithms are fast and compute all solutions to a given probl...
متن کاملAlgebraic properties of robust Padé approximants
For a recent new numerical method for computing so-called robust Padé approximants through SVD techniques, the authors gave numerical evidence that such approximants are insensitive to perturbations in the data, and do not have so-called spurious poles, that is, poles with a close-by zero or poles with small residuals. A black box procedure for eliminating spurious poles would have a major impa...
متن کاملLook-ahead Levinson- and Schur-type Recurrences in the Padé Table∗
For computing Padé approximants, we present presumably stable recursive algorithms that follow two adjacent rows of the Padé table and generalize the well-known classical Levinson and Schur recurrences to the case of a nonnormal Padé table. Singular blocks in the table are crossed by look-ahead steps. Ill-conditioned Padé approximants are skipped also. If the size of these lookahead steps is bo...
متن کاملInversion of Mosaic Hankel Matrices via Matrix Polynomial Systems
Heinig and Tewodros [18] give a set of components whose existence provides a necessary and sufficient condition for a mosaic Hankel matrix to be nonsingular. When this is the case they also give a formula for the inverse in terms of these components. By converting these components into a matrix polynomial form we show that the invertibility conditions can be described in terms of matrix rationa...
متن کاملComputation of Numerical Padé-Hermite and Simultaneous Padé Systems I: Near Inversion of Generalized Sylvester Matrices
Abstract. We present new formulae for the “near” inverses of striped Sylvester and mosaic Sylvester matrices. The formulae assume computation over floating-point rather than exact arithmetic domains. The near inverses are expressed in terms of numerical Padé-Hermite systems and simultaneous Padé systems. These systems are approximants for the power series determined from the coefficients of the...
متن کامل